
Joint Bayesian Compressed Sensing for Multi-contrast Reconstruction 
 

B.Bilgic1,V.K.Goyal1,andE.Adalsteinsson1,2 

1EECS,MIT,Cambridge,MA,UnitedStates, 2Harvard-MITDivisionofHealthSciencesandTechnology,MIT,Cambridge,MA,UnitedStates 

 

INTRODUCTION: Clinical MRI routinely relies on multiple acquisitions of the same region of 
interest with several different contrasts. We present a reconstruction algorithm based on 
Bayesian compressed sensing to exploit such multi-contrast acquisitions for accelerated imaging 
by jointly reconstructing a set of related images from undersampled k-space. Our method offers 
better performance than when the images are either reconstructed individually [1], or jointly by a 
previously proposed method, M-FOCUSS [2]. 
THEORY: Let the signals {xi}    ∈ RM represent MRI scans with different image weightings. 
We obtain a sparse representation by modifying the undersampled k-space data yi according to 
Fiδi

x = (1−e−2πjω/n)yi ≡ yi
x, where Fi ∈ C 

     
are undersampled Fourier operators, δi

x is the ith 
vertical image gradient, yi

x
  are modified observations, ω is the vertical frequency index; and we 

have an analogous equations for horizontal gradients δi
y. We model the data as being corrupted 

by Gaussian noise with variance σ2 via yi
x = Fiδi

x+ni. To take the complex nature of noise into 
account, we modify the observations as [R(yi

x);I(yi
x)] = [R(Fi);I(Fi)]δi

x+[R(ni);I(ni)], which 
we concisely rewrite as Yi

x = Φiδi
x+Ni, where R(.) and I(.) indicate real and imaginary parts. We 

model the sparse coefficients to be drawn from a product of Normal distributions with variances 
determined by the hyperparameters α = {αj}   and the noise precision parameter α0 = σ−2

 as,   
p(δi

x |α,α0) = Π   N(δi,j
x|0,αj

−1α0
−1) where N(·|0,αj

−1α0
−1) is a zero-mean Gaussian with variance 

αj
−1α0

−1. We also define a Gamma prior over α0, so that the posterior p(δi
x|Yi

x,α) can be 
analytically computed to yield a Student-t distribution having mean μi = ΣiΦi

TYi
x
  and covariance 

Σi = (Φi
TΦi+A)−1 with A = diag(α1,…,αM). To evaluate this posterior, we estimate α via 

maximum likelihood by maximizing L(α) = Σ    p(Yi
x|α) [3]. Once the gradients {δi

x}     and 
{δi

y}  are obtained, we find images {xi}   that are consistent with these and k-space 
measurements {yi}    by solving a least squares problem. 
METHODS: To demonstrate the performance of Bayesian CS, two datasets were reconstructed. 
The first set consists of T2-weighted images obtained with two different TE’s using a TSE 
sequence (256×256 pixels,  1×1×3 mm3, TR=6000, TE1=27, TE2=94 ms). A single slice was 
retrospectively undersampled along phase encoding with acceleration R = 2.5 using a different 
mask for each image. The SRI24 atlas [4] features proton density, T2 and T1 weighted scans at 
256×256 resolution. A single slice from the atlas was retrospectively undersampled along phase 
encoding with acceleration R = 4 using different undersampling masks. Both datasets were 
reconstructed using the algorithm in [1], M-FOCUSS joint reconstruction method [2] and joint 
Bayesian CS.  
RESULTS: Fig. 1 depicts reconstruction results 
for the TSE dataset. Here, Lustig et al.’s 
algorithm [1] returned 9.4% NRMSE 
(normalized root-mean-square error), while the 
error was 5.1% and 3.6% for M-FOCUSS (not 
depicted) and joint Bayesian method, 
respectively. The reconstructions took 26 
minutes for [1], 4 minutes for [2] and 29.9 hours 
for Bayesian CS. SRI24 atlas reconstruction 
results are given in Fig. 2, wherein Lustig et al.’s 
code yielded 9.4% NRMSE, while M-FOCUSS 
(not depicted) and joint Bayesian CS had 3.2% 
and 2.3% error, respectively. The reconstruction times were 43 minutes for [1], 5 minutes for [2] and 26.4 hours for Bayesian CS.  
DISCUSSION: The success of the joint Bayesian CS algorithm is based on the premise that the multi-contrast scans share a set of similar 
gradients. While estimating α, data from all L scans contribute to likelihood maximization procedure and once the point estimates are 
constituted, the posterior for the signal coefficients δi

x
  is estimated based only on its related k-space data Yi

x
  due to μi = ΣiΦi

TYi
x. This 

formulation renders Bayesian CS flexible enough to support idiosyncratic image features, while still enabling information sharing among 
images. Currently, the long reconstruction times of the Bayesian algorithm make it prohibitive for clinical use as implemented, but we 
expect future implementations on graphics processing units to overcome this drawback and enable the application of joint image 
reconstructions to highly-accelerated image acquisitions. This joint reconstruction paradigm extends to other MR applications where priors 
occur naturally and sparsity features are shared including, e.g., spectroscopic imaging joint with structural MRI, and quantitative 
susceptibility mapping joint with the magnitude of structural MRI. 
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Fig. 2. (a) Lustig et al.’s algorithm returned 9.4 % NRMSE. (b) Absolute errors for
gradient descent. (c) Bayesian CS yielded 2.3 % error. (d) Errors for Bayesian CS. 

Fig. 1. (a) Lustig et al.’s algorithm 
yielded 9.4 % NRMSE. (b) Absolute 
errors relative to Nyquist rate image. 
(c) Bayesian CS returned 3.6 % error. 
(d) Absolute errors for Bayesian CS. 

Error: 9.4 %, plots scaled ×2 Individual CS recon. R = 4 

Error: 2.3 %, plots scaled ×2 Joint Bayesian CS recon. R = 4 

Individual CS recon. R = 2.5 

Error: 9.4 %, plots scaled ×2 

Joint Bayesian CS recon. R = 2.5

Error: 3.6 %, plots scaled ×2 
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